Toxic gas removal with kaolinite, metakaolinite, radiolarite, and diatomite


Bayram A., Arkan E., SÜTÇÜ M.

Chemosphere, cilt.314, 2023 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 314
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1016/j.chemosphere.2022.137707
  • Dergi Adı: Chemosphere
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), Artic & Antarctic Regions, BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, EMBASE, Environment Index, Food Science & Technology Abstracts, Geobase, Greenfile, Metadex, Pollution Abstracts, Public Affairs Index, Veterinary Science Database, Civil Engineering Abstracts
  • Anahtar Kelimeler: Clays, Dead microorganisms, Diatomite, Kaolinite, Langmuir adsorption isotherm, Metakaolinite, Radiolarite, Toxic gas adsorption
  • Manisa Celal Bayar Üniversitesi Adresli: Evet

Özet

In this study, some clays and dead microorganisms were compared in terms of their adsorption ability against special toxic gases. To this end, an experimental investigation was conducted to explore the adsorption kinetics of kaolinite, metakaolinite, radiolarite, and diatomite to ammonia (NH3), ethylene (C2H4), and carbon dioxide (CO2). Numerous analyses, such as x-ray fluorescence (XRF), x-ray diffraction (XRD), thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), and particle size distribution, have been performed for mineralogical and structural characterization of studied materials. Also, adsorption characteristics were investigated with the help of an ultra-precision scale and computer-controlled multi-gas control system. Since ammonia has the highest dipole moment among all studied gases, its removal efficiency was found as the highest in all materials. Regarding clay substances, metakaolinite indicated a lower response than kaolinite due to phase transformation. But, considering the microorganisms, diatomite toxic gas uptake is at least five times better than examined clays while the gas uptake behavior of radiolarite is analog to metakaolinite. Moreover, the adsorption behaviors of proposed materials are clarified with Langmuir isotherms, The results could facilitate improvements in applying microorganisms to the toxic gas environment as a natural adsorbent material.