EXPERIMENTAL ANALYSIS OF A SOLAR DESALINATION SYSTEM WITH GRAPHENE NANOPLATELET-EMBEDDED LATENT HEAT THERMAL ENERGY STORAGE UNIT


Şirin C., SELİMEFENDİGİL F.

Heat Transfer Research, cilt.55, sa.3, ss.1-15, 2024 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 55 Sayı: 3
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1615/heattransres.2023048889
  • Dergi Adı: Heat Transfer Research
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aerospace Database, Communication Abstracts, Compendex, INSPEC, Metadex, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.1-15
  • Anahtar Kelimeler: energy, exergy analysis, graphene nanoplatelets, solar desalination system, thermal energy storage
  • Manisa Celal Bayar Üniversitesi Adresli: Evet

Özet

In the present work, it is aimed to improve the yield of a single-slope solar desalination system (SDS) using graphene nanoplatelet-embedded thermal energy storage unit (TSU). In the initial stage of this work, three SDSs with different slope angles of condensation surface including 40°, 50°, and 60° are considered. According to the result of the initial experiments, the SDS with 40° gave the superior performance. In the second part of the study, three different SDS configurations with 40° slope angle including a conventional SDS, an SDS with only paraffin-containing TSU, and an SDS with graphene nanoplatelet-embedded paraffin-containing TSU have been developed and tested under the same environmental conditions. According to the findings of the second experimental stage, utilizing only paraffin-containing and graphene nanoplatelet-embedded paraffin-containing TSUs in the conventional system with 40° slope angle improved the accumulated yield of the system as 11.85% and 26.96%, respectively. Also, energy and exergy efficiencies of the SDS with 40° slope angle were improved from 16.02% to 19.69% and from 1.36% to 2.13%, respectively, using the TSU with graphene nanoplatelets. The attained findings of this work clearly present the positive influence of employing graphene nanoplatelets in TSU of a single-slope SDS.