Group classification for path equation describing minimum drag work and symmetry reductions


Pakdemirli M., AKSOY Y.

Applied Mathematics and Mechanics (English Edition), cilt.31, sa.7, ss.911-916, 2010 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 31 Sayı: 7
  • Basım Tarihi: 2010
  • Doi Numarası: 10.1007/s10483-010-1325-x
  • Dergi Adı: Applied Mathematics and Mechanics (English Edition)
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.911-916
  • Anahtar Kelimeler: minimum drag work, Lie group theory, group classification
  • Manisa Celal Bayar Üniversitesi Adresli: Evet

Özet

The path equation describing the minimum drag work first proposed by Pakdemirli is reconsidered (Pakdemirli, M. The drag work minimization path for a flying object with altitude-dependent drag parameters. P roceedin gs of the I nstituti on of Mechanical Engineers, Part C, Journal of Mechanical Engineering Science 223 (5), 1113-1116 (2009)). The Lie group theory is applied to the general equation. The group classification with respect to an altitude-dependent arbitrary function is presented. Using the symmetries, the group-invariant solutions are determined, and the reduction of order is performed by the canonical coordinates. © Shanghai University and Springer-Verlag.