Principle, design and analysis of a novel axial flux switched reluctance machine with fully pitched winding structure


ŞAHİN C. A., Karacor M.

Electrical Engineering, cilt.104, sa.3, ss.1527-1538, 2022 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 104 Sayı: 3
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1007/s00202-021-01417-z
  • Dergi Adı: Electrical Engineering
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Compendex, INSPEC, DIALNET
  • Sayfa Sayıları: ss.1527-1538
  • Anahtar Kelimeler: Axial flux, Fully pitched, Short pitched, Switched reluctance machine, Torque ripple
  • Manisa Celal Bayar Üniversitesi Adresli: Evet

Özet

In this study, the fully pitched axial flux switched reluctance machine (FP-AFSRM), which is a new configuration in the literature, was designed and 3D magnetostatic analyses were performed. The focus of the study is to produce higher torque density by simply changing the winding structure. Conventional SRMs are also known as short pitched SRM (SPSRM) since they have a short pitched winding structure. Fully pitched SRMs (FPSRMs) produce higher torque compared to SPSRMs with the mutual coupling effect between phases due to their fully pitched winding structure. In parallel with that, especially for electric vehicles, axial designs have increased gradually instead of radial design of electrical machines. For this purpose, the FP-AFSRM structure was proposed by combining axial design and fully pitched winding structure. The proposed FP-AFSRM model achieved up to 15.07% higher torque density than the basic SP-AFSRM model at different currents and equal copper losses. The proposed FP-AFSRM can be considered as an important alternative machine, especially for electric vehicle technologies and different technological fields, with the advantages of the high torque density and axial geometric structure.