Evaluation of the failure responses of filament wound and pre-preg wrapped glass fiber/epoxy composite tubes under quasi-static torsional loading


SOYKÖK İ. F., Ozcan A. R., TAŞ H.

Materials Research Express, cilt.6, sa.5, 2019 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 6 Sayı: 5
  • Basım Tarihi: 2019
  • Doi Numarası: 10.1088/2053-1591/ab0151
  • Dergi Adı: Materials Research Express
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Anahtar Kelimeler: composites, computer modeling, mechanical properties, orientation, stiffness
  • Manisa Celal Bayar Üniversitesi Adresli: Evet

Özet

This paper introduces an experimental and numerical investigation into hollow cylindrical thin-walled glass fibre reinforced epoxy matrix composite shafts produced by using both pre-preg wrapping and filament winding methods. The filament wound samples were manufactured with four different helix angles ([±30]FW, [±45]FW, [±60]FW, and [±75]FW ), whereas [0, 90]PP pre-pregs was utilised for producing the wrapped kind of samples. In order to assess the quasi-static failure responses, the samples were subjected to increasing amount of torsional load at a fixed angular rotation speed. The experimental findings of [±30]FW, [±45]FW, and [±60]FW samples were found to be very compatible with those obtained via Finite Element Analysis (FEA). Contrarily, the numerical model were not able to describe accurately the load - displacement behaviour of [±75]FW and [0, 90]PP with the exception of the initial loading phase. [±45]FW was found as the most favourable option for designers in terms of torsional stiffness. Whereas, those characterised by [±30]FW, and [±60]FW exhibited very close torsional resistances in a difference range of only 5%. [0, 90]PP exhibited the lowest average torsional failure resistant and stiffness but the highest average rotation angle before rupture.