Synthesis of 2-amino-5-methylpyridinium tetrachloridocadmate(II) (C6H9N2)2[CdCl4]: Structure, DFT-calculated descriptors and molecular docking study


Jomaa I., BARDAK F., ISSAOUI N., Cabeza A., Choquesillo-Lazarte D., ATAÇ A., ...Daha Fazla

Journal of King Saud University - Science, cilt.36, sa.5, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 36 Sayı: 5
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1016/j.jksus.2024.103178
  • Dergi Adı: Journal of King Saud University - Science
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, BIOSIS, zbMATH, Directory of Open Access Journals
  • Anahtar Kelimeler: Hirshfeld surface, DFT calculations, IR spectroscopy, AIM-RDG, HOMO-LUMO, Molecular docking
  • Manisa Celal Bayar Üniversitesi Adresli: Evet

Özet

In this research paper, (C6H9N2)2[CdCl4], was effectively synthesized using the slow solvent evaporation procedure. Single crystal X-ray diffraction (scXRD) analysis revealed that the compound crystallizes in the triclinic system, specifically in the space group P 1¯. Powder XRD (PXRD) of the bulk material showed some minor impurities. The atomic arrangement of the title structure comprises discrete tetrahedral groups [CdCl4]2− linked to the organic entities through weak N(C)[sbnd]H…Cl hydrogen bonds. Solid-state contacts were further studied through Hirshfeld surface analyses, complemented by 2D fingerprint plots. Computational results, obtained using the B3LYP tool with 6-311++G(d,p) + LANL2DZ mixed basis set, demonstrated consistent geometrical, vibrational, and electronic features to the experimental data. Non-covalent interactions were explored in depth using Atoms-In-Molecule (AIM) and Reduced Density Gradient (RDG) analyses. Thermogravimetry (TG) and Differential Scanning Calorimetry (DSC) analyses showed melting at 378 K and decomposition at around 540 K. Furthermore, the inhibition activity of the examined compound was explored in-silico through molecular docking studies targeting the inducible Nitric Oxide Synthase (iNOS) enzymes.