Modelled and measured residual stresses in a bimaterial joint


ŞAHİN S., Toparli M., Ozdemir I., Sasaki S.

Journal of Materials Processing Technology, cilt.132, sa.1-3, ss.235-241, 2003 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 132 Sayı: 1-3
  • Basım Tarihi: 2003
  • Doi Numarası: 10.1016/s0924-0136(02)00932-9
  • Dergi Adı: Journal of Materials Processing Technology
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.235-241
  • Anahtar Kelimeler: residual stress, finite element method, welding, bimaterial, elasto-plastic analysis
  • Manisa Celal Bayar Üniversitesi Adresli: Evet

Özet

A finite element technique has been used to predict residual and thermal stresses due to welding. For this purpose, a steel-brass material couple was chosen and thin plates of the materials were hard brazed. The finite element study was carried out using two-dimensional models. After the temperature distributions as a result of welding were calculated, thermal and residual stress values obtained. Thermo-elasto-plastic formulations using a von-Mises yield criterion with linear isotropic-hardening were employed. For this deformation, the initial stress method was used and the kinematical Bauschinger effect was considered. The authors prepared all calculation programs using FORTRAN 77. To obtain residual stresses that occur during the welding, the hole-drilling strain-gage method was chosen and conducted in accordance with the ASTM Standard E 837-99. The agreement between the calculated results and the experimental data shows that the finite element analysis method is reliable. © 2002 Elsevier Science B.V. All rights reserved.